

for DC currents or voltages, temperature sensors, remote sensors or potentiometers

Application

The combined transmitter/alarm unit **SINEAX VC 603** (Figs. 1 and 2) converts the input variable – a DC current or voltage, or a signal from a thermo-couple, resistance thermometer, remote sensor or potentiometer – to a proportional analogue output signal. It is also equipped with 2 limit contacts for monitoring the input variable.

The analogue output signal is either an impressed current or superimposed voltage which is processed by other devices for purposes of displaying, recording and/or regulating a constant. The binary output signals of the two limit contact circuits are used for signalling out-of-limit conditions, control purposes and two-point regulation.

A considerable number of measuring ranges including bipolar or spread ranges are available.

Input variable and measuring range are programmed with the aid of a PC and the corresponding software. Other parameters relating to specific input variable data, the analogue output signal, the transmission mode, the operating sense, the binary output signals and the open-circuit sensor supervision can also be programmed.

The open-circuit sensor supervision is in operation when the SINEAX VC 603 is used in conjunction with a thermo-couple, resistance thermometer, remote sensor or potentiometer.

The transmitter/alarm unit fulfils all the important requirements and regulations concerning electromagnetic compatibility **EMC** and **Safety** (IEC 1010 resp. EN 61 010). It was developed and is manufactured and tested in strict accordance with the **quality assurance standard** ISO 9001/ EN 29 001.

Production QA is also certified according to guideline 94/9/EG.

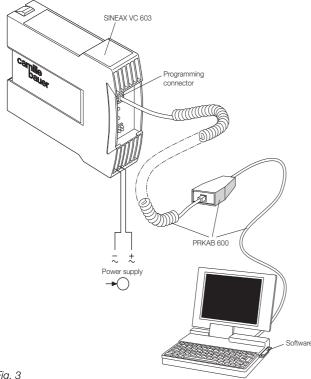
Fig. 1. SINEAX VC 603 in housing S35 clipped onto a top-hat rail.

Features / Benefits

- Input variable (temperature, variation of resistance, DC signal) and measuring range programmed using PC / Simplifies project planning and engineering (the final measuring range can be determined during commissioning). Short delivery times and low stocking levels
- Analogue output signal and binary output signals also programmed on the PC (analogue: impressed current or superimposed voltage for all ranges between - 20 and + 20 mA DC resp. - 12 and + 15 V DC; binary: various functions associated with the limit contact circuits) / Universally applicable. Short delivery times and low stocking levels
- Electrical insulation between measured variable, analogue output signal, binary output signals and power supply / Safe isolation acc. to EN 61 010
- Wide power supply tolerance / Only two operating voltage ranges between 20 and a maximum of 264 V DC/AC

Fig. 2. SINEAX VC 603 in housing ${\bf S35}$ screw hole mounting brackets pulled out.

- Available in type of protection "Intrinsic safety" [EEx ia] IIC (see "Table 7: Data on explosion protection")
- Ex devices also directly programmable on site / No supplementary Ex interface needed
- Standard version as per Germanischer Lloyd
- Provision for either snapping the transmitter/alarm unit onto top-hat rails or securing it with screws to a wall or panel


- Other programmable parameters: specific measured variable data (e.g. two, three or four-wire connection for resistance thermometers, "internal" or "external" cold junction compensation of thermo-couples etc.), transmission mode (special linearised characteristic or characteristic determined by a mathematical relationship, e.g. output signal = f (measured variable)), operating sense (output signal directly or inversely proportional to the measured variable) and open-circuit sensor supervision (output signal assumes fixed preset value between 10 and 110%, supplementary output contact signalling relay) / Highly flexible solutions for measurement problems
- All programming operations by IBM XT, AT or compatible PC running the self-explanatory, menu-controlled programming software, if necessary during operation / No ancillary hand-held terminals needed
- Digital measured variable data available at the programming interface / Simplifies commissioning, measured variable and signals can be viewed on PC in the field
- Standard software includes functional test program / No external simulator or signal injection necessary
- Self-monitoring function and continuously running test program / Automatic signalling of defects and device failure

Programming (Figs. 3 and 4)

A PC with RS 232 C interface (Windows 3.1x, 95, 98, NT or 2000), the programming cable PRKAB 600 and the configuration software VC 600 are required to program the transmitter/alarm unit. (Details of the programming cable and the software are to be found in the separate Data sheet: PRKAB 600 Le.)

The connections between

"PC \leftrightarrow PRKAB 600 \leftrightarrow SINEAX VC 603" can be seen from Fig. 3. The power supply must be applied to SINEAX VC 603 before it can be programmed.

A suitable PC is an IBM XT, AT or compatible.

The software VC 600 is supplied on a CD.

The programming cable PRKAB 600 adjusts the signal level and provides the electrical insulation between the PC and the transmitter/alarm unit SINEAX VC 603.

The programming cable PRKAB 600 is used for programming both standard and Ex versions.

Of the programmable details listed in section "Features/Benefits", **one** parameter – the **output signal** – has to be determined by PC programming as well as mechanical setting on the transmitter/alarm unit ...

- ... the output signal range by PC
- ... the **type** of output (current or voltage signal) has to be set **by DIP switch** (see Fig. 4).

The eight pole DIP switch is located on the PCB in the SINEAX VC 603.

DIP switches	Type of output signal
ON 12345678	impressed current
ON 111111111111111111111111111111111111	superimposed voltage

Fig. 4

Measured variable M

The measured variable M and the measuring range can be programmed

Table 1: Measured variables and measuring ranges

Measured variables	Measuring ranges		
	Limits	Min. span	Max. span
DC voltages			
direct input	± 300 mV 1	2 mV	300 mV
via potential divider ²	± 40 V 1	300 mV	40 V
DC currents			
low current range	± 12 mA1	0.08 mA	12 mA
high current range	– 50 to + 100 mA ¹	0.75 mA	100 mA
Temperature monitored by two, three or four-wire resistance thermometers	– 200 to 850 °C		
low resistance range	0740 Ω¹	8Ω	740 Ω
high resistance range	05000 Ω¹	40 Ω	5000 Ω
Temperature monitored by thermo-couples	–270 to 1820 °C	2 mV	300 mV
Variation of resistance of remote sensors / potentiometers			
low resistance range	0740 Ω¹	8Ω	740 Ω
high resistance range	05000 Ω¹	40 Ω	5000 Ω

DC voltage

Measuring range:	See Table 1	Summation circuit:	Series or parallel connection of 2 or more two, three or four-wire resist-
Direct input:	Wiring diagram No. 1 ³		ance thermometers for deriving the
Input resistance:	Ri > 10 M Ω Continuous overload max. – 1.5 V, + 5 V		mean temperature or for matching other types of sensors, wiring diagram Nos. 4 - 6 ³
Input via potential divider:	Wiring diagram No. 2 ³	Differential circuit:	2 identical three-wire resistance ther- mometers for deriving the mean tem- perature RT1–RT2,
Input resistance:	$Ri = 1 M\Omega$ Continuous overload		wiring diagram No. 7 ³
	max. \pm 100 V	Input resistance:	$R_i > 10 M\Omega$
		Lead resistance:	\leq 30 Ω per lead

¹Note permissible value of the ratio "full-scale value/span ≤ 20 "

² Max. 30 V for Ex version with I.S. measuring input

³ See "Table 9: Measuring input".

DC current

Measuring range:

Low currents:

Input resistance:

High currents:

Input resistance:

Resistance thermometer

Measuring range: See Tables 1 and 8 Resistance types: Type Pt 100 (DIN IEC 751) Type Ni 100 (DIN 43 760) Type Pt 20/20 °C Type Cu 10/25 °C Type Cu 20/25 °C See "Table 6: Specification and ordering information", feature 6 for other Pt or Ni. Measuring current: \leq 0.38 mA for measuring range 0...740 Ω or \leq 0.06 mA for measuring range 0...5000 Ω

See Table 1

 $Ri = 24.7 \Omega$

 $Ri = 24.7 \Omega$

Wiring diagram No. 33

Continuous overload max. 150 mA

Wiring diagram No. 3³

Continuous overload max. 150 mA

Standard circuit:

- two-wire connection, wiring diagram No. 43

1 resistance thermometer:

- three-wire connection, wiring diagram No. 53

- four-wire connection, wiring diagram No. 63

or ne ıg

Thermo-couples Measuring current: \leq 0.38 mA for measuring range 0...740 Ω Measuring range: See Tables 1 and 8 or \leq 0.06 mA for Thermo-couple pairs: Type B: Pt30Rh-Pt6Rh (IEC 584) measuring range 0...5000 Ω (IEC 584) Type E: NiCr-CuNi Type J: Fe-CuNi (IEC 584) Kinds of input: 1 resistance sensor WF Type K: NiCr-Ni (IEC 584) current measured at pick-up, Type L: Fe-CuNi (DIN 43710) wiring diagram No. 121 Type N: NiCrSi-NiSi (IEC 584) 1 resistance sensor WF DIN Type R: Pt13Rh-Pt (IEC 584) current measured at pick-up, Type S: Pt10Rh-Pt (IEC 584) wiring diagram No. 131 Type T: Cu-CuNi (IEC 584) Type U: Cu-CuNi (DIN 43710) 1 resistance sensor for two, three or Type W5-W26 Re four-wire connection, wiring diagram Nos. 4-61 Other thermo-couple pairs on request 2 identical three-wire resistance sen-Standard circuit: 1 thermo-couple, internal cold juncsors for deriving a differential, tion compensation. wiring diagram No. 71 wiring diagram No. 81 Input resistance: $R_i > 10 M\Omega$ 1 thermo-couple, external cold junction compensation, Lead resistance: \leq 30 Ω per lead wiring diagram No. 91 Measuring output ⊖► Summation circuit: 2 or more thermo-couples in a summation circuit for deriving the mean Output signals A1 and A2 temperature, external cold junction The output signals available at A1 and A2 can be configured for compensation, either an impressed DC current I, or a superimposed DC voltage wiring diagram No. 101 U₄ by appropriately setting DIP switches. The desired range is pro-Differential circuit: 2 identical thermo-couples in a differgrammed using a PC. A1 and A2 are not DC isolated and exhibit ential circuit for deriving the mean the same value. temperature TC1 - TC2, no provision for cold junction compensation, Standard ranges for I_{A} : 0...20 mA or 4...20 mA wiring diagram No. 11¹ Non-standard ranges: Limits -22 to +22 mA Min. span 5 mA $R_i > 10 M\Omega$ Input resistance: Max. span 40 mA Open-circuit voltage: Neg. -13.2...-18 V, pos. 16.5...21 V Cold junction compensation: Internal or external + 15 V, resp. -12 V Burden voltage I_{A1} : Internal: Incorporated Ni 100 External resistance I_{A1} : $R_{ext} \max. [k\Omega] = \frac{15 \text{ V}}{I_{AN} [mA]}$ Permissible variation of the internal cold resp. = $\frac{-12 \text{ V}}{\text{I}_{AN} \text{ [mA]}}$ \pm 0.5 K at 23 °C, \pm 0.25 K/10 K junction compensation: External: 0...70 °C, programmable $I_{AN} = Full-scale output current$ < 0.3 V Burden voltage I Resistance sensor, potentiometer External resistance I_{A2} : R_{ext} max. $[k\Omega] = \frac{0.3 \text{ V}}{I_{AN}}$ [mA] Measuring range: See Table 1 Resistance sensor types: Type WF Residual ripple: < 1% p.p., DC ... 10 kHz Type WF DIN < 1.5% p.p. for an output span < 10 mA Potentiometer see "Table 6: Specification and ordering information" fea-0...5, 1...5, 0...10 or 2...10 V Standard ranges for U_{A} : ture 5. Non-standard ranges: Limits -12 to + 15 V Min. span 4 V Max. span 27 V Short-circuit current: ≤ 40 mA Load-capacity U_{A1} / U_{A2}: 20 mA

¹ See "Table 9: Measuring input".

External resistance		Out
U _{A1} / U _{A2} :	$R_{ext} \ [k\Omega] \geq \frac{U_{A} \left[V\right]}{20 \ mA}$	Cha
Residual ripple:	< 1% p.p., DC 10 kHz	Tab
	< 1.5% p.p. for an output span < 8 V	M
		D
Fixed settings for the out		D
After switching on:	A1 and A2 are at a fixed value for 5 s after switching on (default). Setting range between -10 and	R€ (lir
	110% ¹ programmable, e.g. between 2.4 and 21.6 mA (for a scale of 4 to 20 mA).	Th (lin
When input variable	The green LED ON flashes for 5 s	Se
out of limits:	A1 and A2 are at either a lower or an upper fixed value when the input variable	D
	falls more than 10% below the minimum value of the permissible range	
	exceeds the maximum value of the permissible range by more than 10%.	D
	Lower fixed value = $-10\%^1$, e.g. -2 mA (for a scale of 0 to 20 mA).	D
	Upper fixed value = 110% ¹ , e.g. 22 mA (for a scale of 0 to 20 mA).	D
	The green LED ON flashes	Re
Open-circuit sensor:	A1 and A2 are at a fixed value when an open-circuit sensor is detected	(lir
	(see Section "Sensor and open-cir- cuit lead supervision -,	Th (lir
	The fixed value of A1 and A2 is con- figured to either maintain the value at	Se
	the instant the open-circuit occurs or adopt a preset value between -10 and 110% ¹ , e.g. between 1.2 and 10.8 V (for a scale of 2 to 10 V).	D
	The green LED ON flashes and the red LED -	D
		S

Output characteristic

naracteristic:

Programmable

Table 2: Available characteristics (acc. to measured variable)

Measured variables	Characteristic		
DC voltage			
DC current	A /		
Resistance thermometer (linear variation of resistance)			
Thermo-couple (linear variation of voltage)	M		
Sensor or potentiometer	A = M		
DC voltage	A		
DC current	$A = \sqrt[4]{M} \text{ or } M$ $A = \sqrt[4]{M}^{3}$		
DC voltage	≜ A		
DC current			
Resistance thermometer (linear variation with temperature)			
Thermo-couple signal (linear variation with temperature)	M M tics		
Sensor or potentiometer	A = f (M) ² linearised		
DC voltage	A = f (M) ² linearised		
DC current			
Sensor or potentiometer	A = f (M) ³ quadratic		

¹ In relation to analogue output span A1 resp. A2.

 2 25 input points M given referred to a linear output scale from –10% to + 110% in steps of 5%.

Operating sense:

Setting time (IEC 770):

Programmable output signal directly or inversely proportional to measured variable

Programmable from 2 to 30 s

External resistance

³ 25 input points M given referred to a quadratic output scale from -10% to + 110%. Pre-define output points: 0, 0, 0, 0.25, 1, 2.25, 4.00, 6.25, 9.00, 12.25, 16.00, 20.25, 25.00, 30.25, 36.00, 42.25, 49.00, 56.25, 64.00, 72.25, 81.00, 90.25, 100.0, 110.0, 110.0%.

DC

DC, AC power pack (DC and 45...400 Hz)

Table 3: Nominal voltage and tolerance

Output contacts for alarm unit II1, II2, (II3)

Binary output signals K1, K2, K3 Output contact K1: Relay 1

Nominal voltage U _N	Tolerance	Instrument version	Output contact K2:
24 60 V DC / AC	DC – 15+ 33%	Standard	Oulput contact NZ.
85230 V ¹ DC / AC	AC ± 15%	(Non-Ex)	Output contact K3:
24 60 V DC / AC	DC – 15+ 33% AC ± 15%	Type of	
85230 V AC	± 10%	protection "Intrinsic safety"	
85110 V	- 15+ 10%	EEx ia] IIC	

Power consumption:

 \leq 2.2 W resp. \leq 4.2 VA

Open-circuit sensor circuit supervision -

Resistance thermometers, thermo-couples, remote sensors and potentiometer input circuits are supervised. The circuits of DC voltage and current inputs are not supervised.

-0		
Pick-up/reset level:	1 to 15 k Ω , acc. to kind of measurement and range	Limit type:
Signalling mode		
Output signals A1 and A2:	Programmable fixed values. The fixed value of A1 and A2 is con- figured to either maintain their values at the instant the open-circuit occurs or adopt a preset value between – 10 and 110% ² , e.g. between 1.2 and 10.8 V (for a scale of 2 to 10 V)	
Frontplate signals:	The green LED ON flashes and the red LED	Input vari

Relav 3

1 potentially-free changeover contact (see Table 4) Operating sense programmable

The relay can be either energised or de-energised in the case of a disturbance.

Set to "relay disabled" if not required!

2 potentially-free changeover contacts (see Table 4) Relay 2

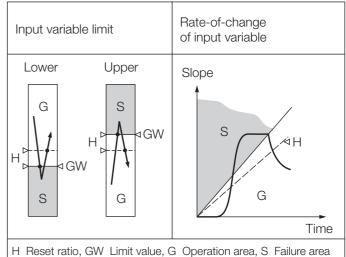
1 potentially-free changeover contact (see Table 4)

Relay 3

1 potentially-free changeover contact (see Table 4)

K3 is only available, providing it is not being used for open-circuit sensor supervision (see Section "Open-circuit sensor circuit supervision \mathcal{H} »). This applies ...

- ... in all cases when the measured variable is a DC voltage or current
- ... when the measured variable is a resistance thermometer, a thermo-couple, a remote sensor or a potentiometer and the relay is set to "Relay disabled"


Programmable

- Disabled
- Lower limit value of the measured variable (see Fig. 5, left)
- Upper limit value of the measured variable (see Fig. 5, left)
- Maximum rate-of-change of the measured variable

 Δ measured variable Slope =

Λt

(see Fig. 5, right)

¹ An external supply fuse must be provided for DC supply voltages > 125 V. ² In relation to analogue output span A1 resp. A2.

Fig. 5. Switching function according to limit monitored.

Output contact K3:

Trip point setting		Programming connector		
using PC for GW1, GW2 and GW3:	Programmable	Interface:	RS 232 C	
	– between –10 and 110% ¹	FCC-68 socket:	6/6 pin	
	(of the measured variable)	Signal level:	TTL (0/5 V)	
	 between ± 1 and ± 50%¹/s (of the rate-of-change of the meas- ured variable) 	Power consumption:	Approx. 50 mW	
Trip point setting		Accuracy data (acc. to DIN/	(IEC 770)	
using potentiometer ⊗ II 1 and ⊗ II2		Basic accuracy:	Max. error $\leq \pm 0.2\%$ Including linearity and repeatability	
for GW1 and GW2:	Programmed to		errors for current, voltage and resist- ance measurement	
	 Relative (± 10%) Setting range ± 10% referred to the set limit 	Additional error (additive):	< ± 0.3% for linearised characteristic	
	– Absolute (0100%) Setting range 0100%		$<\pm 0.3\%$ for measuring ranges < 5 mV, 0.30.75 V, < 0.2 mA or $< 20 \Omega$	
Reset ratio:	Programmable – between 0.5 and 100% ¹ (of the measured variable) – between 1 and 100% ¹ /s		< ± 0.3% for a high ratio between full-scale value and measuring range	
	(of the rate-of-change of the meas- ured variable)		> factor 10, e.g. Pt 100 175.84 Ω…194.07 Ω ≙ 200 °C…250 °C	
Operating and resetting delays:	Programmable		< ± 0.3% for current output < 10 mA span	
Operating sense:	– from 1 to 60 s Programmable		< ± 0.3% for voltage output < 8 V span	
	 Relay energised, LED on Relay energised, LED off Relay de coordinad LED off 		< 2 · (basic and additional error) for two-wire resistance measurement	
	 Relay de-energised, LED on Relay de-energised, LED off 	Reference conditions:		
	(once limit reached)	Ambient temperature	23 °C, ± 2 K	
Relay status signal:	GW1 and GW2 by yellow LED's	Power supply	24 V DC \pm 10% and 230 V AC \pm 10%	
	近1 and 近2, GW3 by red LED (近3)	Output burden	Current: $0.5 \cdot R_{ext}$ max. Voltage: $2 \cdot R_{ext}$ min.	

Table 4: Contact arrangement and data

	Symbol	Material	Contact rating
Relay 1		Gold flashed	AC: ≤ 2 A/250 V (500 VA)
Relay 2 and 3		silver alloy	(30 W)

Influencing factors:

Temperature	<±0.1 0.15% per 10 K
Burden	$<\pm 0.1\% \text{ for current output} \\ < 0.2\% \text{ for voltage output,} \\ \text{providing } \text{R}_{\text{ext}} > 2 \cdot \text{R}_{\text{ext}} \text{ min.}$
Long-time drift	$<\pm$ 0.3% / 12 months
Switch-on drift	<±0.5%
Common and trans- verse mode influence + or – to ground:	< ± 0.2% < ± 0.2%

Relay approved by UL, CSA, TÜV, SEV

¹ In relation to analogue output span A1 resp. A2.

Installation data		Pollution degree:	2
Housing:	Carrying rail housing type S35 on plastic Polycarbonate UL 94-V0.	Installation category II:	Measuring input, programming con- nector, measuring outputs, output contacts
	Refer to Section "Dimensional draw- ings" for dimensions	Installation category III:	Power supply
Mounting:	For snapping onto top-hat rail $(35 \times 15 \text{ mm or } 35 \times 7.5 \text{ mm}) \text{ acc. to}$ EN 50 022	Test voltage:	Measuring input and programming connector to: – output signal 2.3 kV,
	or directly onto a wall or panel using the pull-out screw hole brackets		50 Hz, 1 min. – power supply 3.7 kV,
Mounting position:	Any		50 Hz, 1 min. – output contacts 2.3 kV,
Terminals:	DIN/VDE 0609		50 Hz, 1 min.
	Screw terminals with wire guards for light PVC wiring and		Measuring outputs to:
	max. 2×0.75 mm ² or 1×2.5 mm ²		– power supply 3.7 kV, 50 Hz, 1 min.
Permissible vibrations:	2 g acc. to EN 60 068-2-6 10 … 150 … 10 Hz, 10 cycles		– output contacts 2.3 kV, 50 Hz, 1 min.
Choc:	3 × 50 g 3 shocks each in 6 directions acc. to EN 60 068-2-27		Serial interface for the PC to: – everything else 4 kV, 50 Hz, 1 min. (PRKAB 600)
Weight:	Approx. 0.32 kg		
Electrical insulation:	All circuits (measuring input/measur- ing output/power supply/output con- tacts) are electrically insulated.	Ambient conditions	
	Programming connector and meas- uring input are connected.	temperature:	– 10 to + 55 °C
	The PC is electrically insulated by the	Operating temperature:	–25 to + 55 °C, Ex – 20 to + 55 °C
	programming cable PRKAB 600.	Storage temperature:	– 40 to + 70 °C
Standards		Relative humidity annual mean:	≤ 75% standard climatic rating ≤ 95% enhanced climatic rating
Electromagnetic compatibility:	The standards DIN EN 50 081-2 and DIN EN 50 082-2 are observed		
Intrinsically safe:	Acc. to DIN EN 50 020: 1996-04		
Protection (acc. to IEC 529 resp. EN 60 529):	Housing IP 40 Terminals IP 20		
Electrical design:	Acc. to IEC 1010 resp. EN 61 010		
Operating voltages:	Measuring input < 40 V		
	Programming connector, measuring outputs < 25 V		
	Output contacts, power supply < 250 V		
Rated insulation voltage:	Measuring input, programming con- nector, measuring outputs, output contacts, power supply < 250 V		

Basic configuration	Basic configuration:	Measuring input 05 V DC
The transmitter/alarm unit SINEAX VC 603 is also available already programmed with a basic configuration which is especially recommended in cases where the programming data is not known at the		Measuring output 020 mA linear, fixed value 0% during 5 s after switching on
time of ordering (see "Table 6: Specification and ordering informa-		Settling time 0.7 s
tion", feature 4.).		Open-circuit supervision inactive
SINEAX VC 603 supplied as standard versions are programmed		Mains ripple suppression 50 Hz
for basic configuration (see "Table 5: Standard versions").		Limit functions inactive

Table 5: Standard versions

The following 8 transmitter/alarm unit versions are already programmed for **basic** configuration and are available ex stock. It is only necessary to quote the **Order No.**:

Cold junction compensation	Climatic rating	Instrument	Power supply	Order Code ¹	Order No.
			24 60 V DC / AC	603-1120	987 670
		Standard version	85230 V DC / AC	603-122 0	987 852
	standard	[EEx ia] IIC version, measuring circuit I.S.	24 60 V DC / AC	603-132 0	987 894
included			85110 V DC / 85230 V AC	603-1420	987 935
included		Standard version	24 60 V DC / AC	603-1140	987 836
	increased		85230 V DC / AC	603-1240	987 878
		[EEx ia] IIC version,	24 60 V DC / AC	603-134 0	987 919
		measuring circuit I.S.	85110 V DC / 85230 V AC	603-144 0	987 951

The complete Order Code¹ 603-... $\overline{0}$ and/or a description should be stated for other version with the basic works configuration.

¹ See "Table 6: Specification and ordering information".

Table 6: Specification and ordering information (See also "Table 5: Standard versions")

Order Code 603 –				
Features, Selection	*SCODE	no-go		Insert co
1. Mechanical design			1	box page
1) Carrying rail housing S35			1.	
2. Version / Power supply H (nominal voltage U_N)			1	
1) Standard / 24 60 V DC/AC			. 1.	
2) Standard / 85230 V DC/AC			. 2.	
3) [EEx ia] IIC / 24 60 V DC/AC			. 3.	
4) [EEx ia] IIC / 85110 V DC 85230 V AC			. 4 .	
Lines 3 and 4: Device [EEx ia] IIC, measuring circuit EEx ia IIC				
3. Climatic rating / Cold junction compensation			1	
2) Standard climatic rating; instrument with cold junction compensation			2	
4) Extra climatic rating; instrument with cold junction compensation			4	
4. Configuration			1	
0) Basic configuration, programmed	Z			0
1) Programmed to order				1
2) Programmed to order with test certificate				2
Line 0: If you wish to order the basic configuration, the line "0") must be selected for options 4. to 19., i.e. all the digits of the order code after the 4th. are zeros, see "Table 5: Standard versions" Lines 0 and 1: No test certificate				
5. Measured variable / Measuring input M				
DC voltage				
0) 0 5 V linear	С			. 0.
1) 1 5 V linear	С	Z		. 1 .
2) 010 V linear	С	Z		. 2.
3) 210 V linear	С	Z	4	. 3.
4) Linear input, other ranges [V]	С	Z		. 4 .
5) Square root input function [V]	С	Z		. 5.
6) Input x 3/2 [V]	С	Z	_ · · ·	. 6.
Lines 4 to 6: DC [V] 00.002 to 0 \le 40 V (Ex max. 30 V) or span 0.002 to 40 V between –40 and 40 V, ratio full-scale/span \le 20				

Feature "5. Measured variable / Measuring input M" continued on next page!

Order Code 603 -			
Features, Selection	*SCODE	no-go	Insert code in the 1st box of the next page!
5. Measured variable / Measuring input M (continuation)			
DC current			
7) 020 mA linear	С	Z	7
8) 420 mA linear	С	Z	8
9) Linear input, other ranges [mA]	С	Z	9
A) Square root input function [mA]	С	Z	A
B) Input x 3/2 [mA]	С	Z	В
Lines 9, A and B: DC [mA] 00.08 to 0100 mA or span 0.08 to 100 mA between -50 and 100 mA, ratio full-scale/span ≤ 20			
Resistance thermometer, linearised			
C) Two-wire connection, R $_{\rm L}$ $[\Omega]$	E	Z	С
D) Three-wire connection, $R_{L} \leq 30 \Omega$ /wire	E	Z	D
E) Four-wire connection, $R_{L} \leq 30 \Omega$ /wire	E	Z	Ε
Resistance thermometer, non-linearised			
F) Two-wire connection, R ₁ [Ω]	E	Z	F
G) Three-wire connection, $R_{\rm I} \leq 30 \Omega/{\rm wire}$	E	Z	G
H) Four-wire connection, $R_1 \leq 30 \Omega$ /wire	E	Z	Н
J) Temperature difference [deg] 2 identical resistance thermometers in three-wire connection	E	Z	J
Lines C and F: Specify total lead resistance $R_L [\Omega]$, any value between 0 and 60 Ω . This may be omitted, because two leads can be compensated automatically on site			
Line J: Temperature difference; specify measuring range [deg], also for feature 6.: t_{min} ; t_{max} ; $t_{reference}$			
Thermo-couple linearised			
K) Internal cold junction compensation (not for type B)	DT	GZ	К
L) External cold junction tK [°C] compensation (specify 0°C for type B)*	D	Z	L
Thermo-couple not linearised			
M) Internal cold junction compensation (not for type B)	DT	GZ	М
N) External cold junction tK [°C] compensation (specify 0°C for type B)*	D	Z	N
P) Average temperature [n] tK [°C]	D	Z	P
Q) Temperature difference [deg] 2 identical thermo-couples	D	Z	Q
Lines L, N and P: Specify external cold junction temperature $t_{\kappa}[^\circ C],$ any value between 0 and 70 $^\circ C$			
Line P: State number of sensors [n]			
Line Q: Temperature difference; specify measuring range [deg], also for feature 6.: t_{min} ; t_{max} ; $t_{reference}$			

Feature "5. Measured variable / Measuring input M" continued on next page

* Because of its characteristic, thermocouple type B does not require compensating leads nor cold junction compensation.

Order Code 603 -		
eatures, Selection	*SCODE	no-go
5. Measured variable / Measuring input M (continuation)		
Resistance sensor / Potentiometer	_	
R)WFMeasuring range $[Ω]$ R, \leq 30 $Ω$ /wire	F	Z
S) WF DIN Measuring range $[\Omega]$ $R_i \leq 30 \Omega$ /wire	F	Z
T)PotentiometerMeasuring range $[\Omega]$ Two-wire connectionand R_{L} $[\Omega]$	F	Z
	F	Z
	F	Z
resistance in Ω ; example: 200600200; 05000; 108020 Minimum span at full-scale value ME: 8Ω for ME \leq 740 Ω 40Ω for ME $>$ 740 Ω . Max. resistance value (initial value + span + lead resistance) 5000 Ω . Note! Initial measuring range $<$ 10¥span Line T: Specify total lead resistance R _L [Ω], any value between 0 and 60 Ω . This may be omitted, because two leads can be compensated automatically on site		
Special characteristic		
Z) For special characteristic [V] [mA] [Ω] Fill in Table W 2357 e for special characteristic for V, mA or Ω.		Z
6. Sensor type / Temperature range		
0) No temperature measurement		
1) Pt 100 [°C]		CDFZ
2) Ni 100 [°C]		CDFZ
3) Other Pt [Ω] [°C]		CDFZ
4) Other Ni [Ω] [°C]		CDFZ
5) Pt 20 / 20 °C [°C]		CDFZ
6) Cu 10 / 25 °C [°C]		CDFZ
Lines 1 to 6: Specify measuring range in [°C] or °F, refer to Table 8 for the operating limits for each type of sensors. For temperature difference measurement: specify measuring range and reference temperature for 2nd sensor (t_{min} ; t_{max} ; $t_{reference}$), e.g. 100; 250; 150 Lines 3 and 4: Specify resistance in Ω at 0°C; permissible values are 100 and 1000, multiplied or divided by a whole number, e.g.: 1000 : 4 = 250, 100 : 2 = 50 or 100 x 3 = 300		

Feature "6. Sensor type / Temperature range" continued on next page

Features, Selection		*SCODE	no-go		\mathbf{A}	
6. Sensor type / Temperature range (continuation)						
	C]		CEFTZ	B		
	C]		CEFZ	E		
	C]		CEFZ	J		
<u> </u>	C]		CEFZ	К		
	C]		CEFZ	L		
<u> </u>	C]		CEFZ	N		
	C]		CEFZ	R		
	C]		CEFZ	S		
	C]		CEFZ	т		
U) Type U: Cu-CuNi [°	C]		CEFZ	U		
W) Type W5-W26Re [°	C]		CEFZ	W		
7. Output signal / Measuring output A1* 0) 020 mA, $R_{ext} \le 750 \Omega$. 0.		
			Z	. 1 .		
1) 420 mA, $R_{ext} \le 750 \Omega$ 2) Non-standard	A]		ZZ			
 420 mA, R_{ext} ≤ 750 Ω Non-standard [m] 	A]			. 1.	· · ·	•
1) 420 mA, $R_{ext} \le 750 \Omega$	[A]		Z	. 1.	· · ·	•
1) 420 mA, R _{ext} ≤ 750 Ω 2) Non-standard [m] 3) 0 5 V, R _{ext} ≥ 250 Ω	A]		Z Z	. 1. . 2. . 3.	· · · ·	
1) 420 mA, $R_{ext} \le 750 \Omega$ 2) Non-standard [m] 3) 05 V, $R_{ext} \ge 250 \Omega$ 4) 15 V, $R_{ext} \ge 250 \Omega$	IA]		Z Z Z	. 1 . . 2 . . 3 . . 4 .	· · · ·	•
1) 420 mA, $R_{ext} \le 750 \Omega$ 2) Non-standard [m] 3) 0 5 V, $R_{ext} \ge 250 \Omega$ 4) 1 5 V, $R_{ext} \ge 250 \Omega$ 5) 010 V, $R_{ext} \ge 500 \Omega$ 6) 210 V, $R_{ext} \ge 500 \Omega$	[M]		Z Z Z Z	. 1 . . 2 . . 3 . . 4 . . 5 .	· · · ·	
1) 420 mA, $R_{ext} \le 750 \Omega$ 2) Non-standard [m] 3) 0 5 V, $R_{ext} \ge 250 \Omega$ 4) 1 5 V, $R_{ext} \ge 250 \Omega$ 5) 010 V, $R_{ext} \ge 500 \Omega$ 6) 210 V, $R_{ext} \ge 500 \Omega$			Z Z Z Z Z	. 1 . . 2 . . 3 . . 4 . . 5 . . 6 .	· · · ·	•
1) 420 mA, $R_{ext} \le 750 \Omega$ 2) Non-standard [m] 3) 0 5 V, $R_{ext} \ge 250 \Omega$ 4) 1 5 V, $R_{ext} \ge 250 \Omega$ 5) 010 V, $R_{ext} \ge 500 \Omega$ 6) 210 V, $R_{ext} \ge 500 \Omega$ 7) Non-standard Line 2: -22 to + 22, span 5 to 40 mA Line 7: -12 to + 15, span 4 to 27 V 8. Output characteristic			Z Z Z Z Z	. 1 . . 2 . . 3 . . 4 . . 5 . . 6 . . 7 .	· · · ·	· · · · ·
	[V]		Z Z Z Z Z	. 1 . . 2 . . 3 . . 4 . . 5 . . 6 . . 7 .	· · · ·	· · · · · ·
$ \begin{array}{ c c c c c } \hline 1 & 420 \text{ mA, } R_{ext} \leq 750 \ \Omega \\ \hline 2 & \text{Non-standard} & [m] \\ \hline 3 & 0 & 5 \ V, \ R_{ext} \geq 250 \ \Omega \\ \hline 4 & 1 & 5 \ V, \ R_{ext} \geq 250 \ \Omega \\ \hline 5 & 010 \ V, \ R_{ext} \geq 500 \ \Omega \\ \hline 6 & 210 \ V, \ R_{ext} \geq 500 \ \Omega \\ \hline 7 & \text{Non-standard} \\ \hline 1 & \text{Line } 2: -22 \ \text{to } + 22, \ \text{span } 5 \ \text{to } 40 \ \text{mA} \\ \hline 1 & \text{Line } 7: -12 \ \text{to } + 15, \ \text{span } 4 \ \text{to } 27 \ V \\ \hline 8. \ \text{Output characteristic} \\ \hline 0 & \text{Directly proportional, initial start-up value } 0\% \\ \hline 1 & \text{Inversely proportional, initial start-up value } 100\% \\ \hline \end{array} $	M 6		Z Z Z Z Z Z	. 1 . . 2 . . 3 . . 4 . . 5 . . 6 . . 7 . 0 1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·
$ \begin{array}{ c c c c c } \hline 1 & 420 \text{ mA, } R_{ext} \leq 750 \ \Omega \\ \hline 2 & \text{Non-standard} & [m] \\ \hline 3 & 0 5 \text{ V, } R_{ext} \geq 250 \ \Omega \\ \hline 4 & 1 5 \text{ V, } R_{ext} \geq 250 \ \Omega \\ \hline 4 & 1 5 \text{ V, } R_{ext} \geq 250 \ \Omega \\ \hline 5 & 010 \text{ V, } R_{ext} \geq 250 \ \Omega \\ \hline 6 & 210 \text{ V, } R_{ext} \geq 500 \ \Omega \\ \hline 6 & 210 \text{ V, } R_{ext} \geq 500 \ \Omega \\ \hline 7 & \text{Non-standard} \\ \hline 1 & \text{Ine } 2: -22 \text{ to } + 22 \text{, span } 5 \text{ to } 40 \text{ mA} \\ \hline 1 & \text{Line } 2: -12 \text{ to } + 15 \text{, span } 4 \text{ to } 27 \text{ V} \\ \hline 8 & \text{Output characteristic} \\ \hline 0 & \text{Directly proportional, initial start-up value } 0\% \\ \hline 1 & \text{Inversely proportional, initial start-up value } 100\% \\ \hline 2 & \text{Directly proportional, initial start-up value } \end{array} $	[V] 6 %]		Z Z Z Z Z Z Z Z	. 1 . . 2 . . 3 . . 4 . . 5 . . 6 . . 7 . 0 1 2	 . .<	
$ \begin{array}{ c c c c c } \hline 1 & 420 \text{ mA, } R_{ext} \leq 750 \ \Omega \\ \hline 2 & \text{Non-standard} & [m] \\ \hline 3 & 0 5 \text{ V, } R_{ext} \geq 250 \ \Omega \\ \hline 4 & 1 5 \text{ V, } R_{ext} \geq 250 \ \Omega \\ \hline 4 & 1 5 \text{ V, } R_{ext} \geq 250 \ \Omega \\ \hline 5 & 010 \text{ V, } R_{ext} \geq 250 \ \Omega \\ \hline 6 & 210 \text{ V, } R_{ext} \geq 500 \ \Omega \\ \hline 6 & 210 \text{ V, } R_{ext} \geq 500 \ \Omega \\ \hline 7 & \text{Non-standard} \\ \hline 1 & \text{Ine } 2: -22 \text{ to } + 22 \text{, span } 5 \text{ to } 40 \text{ mA} \\ \hline 1 & \text{Line } 2: -12 \text{ to } + 15 \text{, span } 4 \text{ to } 27 \text{ V} \\ \hline 8 & \text{Output characteristic} \\ \hline 0 & \text{Directly proportional, initial start-up value } 0\% \\ \hline 1 & \text{Inversely proportional, initial start-up value } 100\% \\ \hline 2 & \text{Directly proportional, initial start-up value } \end{array} $	M 6		Z Z Z Z Z Z	. 1 . . 2 . . 3 . . 4 . . 5 . . 6 . . 7 . 0 1	 . .<	
1)420 mA, $R_{ext} \le 750 \Omega$ 2)Non-standard[m]3)0 5 V, $R_{ext} \ge 250 \Omega$ 4)1 5 V, $R_{ext} \ge 250 \Omega$ 5)010 V, $R_{ext} \ge 500 \Omega$ 6)210 V, $R_{ext} \ge 500 \Omega$ 7)Non-standardLine 2: -22 to + 22, span 5 to 40 mALine 7: -12 to + 15, span 4 to 27 V8. Output characteristic0)Directly proportional, initial start-up value 0%1)Inversely proportional, initial start-up value 100%2)Directly proportional, initial start-up value3)Inversely proportional, initial start-up value9. Output time response	[V] 6 %]		Z Z Z Z Z Z Z Z	. 1 . . 2 . . 3 . . 4 . . 5 . . 6 . . 7 . 0 1 2	 . .<	
1)420 mA, $R_{ext} \le 750 \Omega$ 2)Non-standard[m]3)0 5 V, $R_{ext} \ge 250 \Omega$ 4)1 5 V, $R_{ext} \ge 250 \Omega$ 5)010 V, $R_{ext} \ge 500 \Omega$ 6)210 V, $R_{ext} \ge 500 \Omega$ 7)Non-standardLine 2: -22 to + 22, span 5 to 40 mALine 7: -12 to + 15, span 4 to 27 V8.Output characteristic0)Directly proportional, initial start-up value 0%1)Inversely proportional, initial start-up value 100%2)Directly proportional, initial start-up value [m]3)Inversely proportional, initial start-up value9.Output time response0)Rated settling time approx. 1 s	[V] 6 %]		Z Z Z Z Z Z Z Z	. 1 . . 2 . . 3 . . 4 . . 5 . . 6 . . 7 . 0 1 2	 	

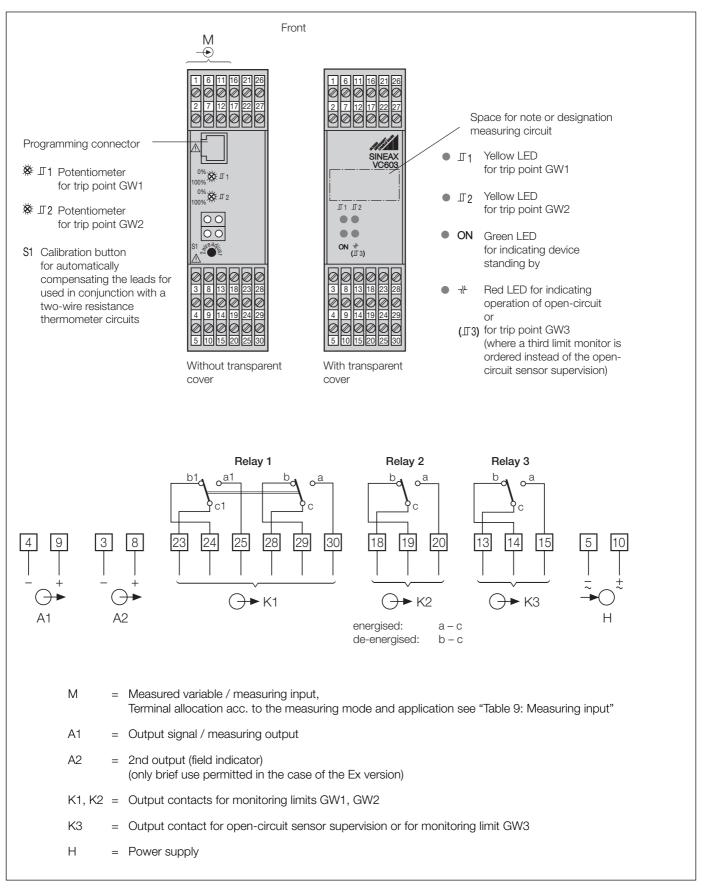
* 2nd output signal A2 for field indicator only

Order Code 603 -			
Features, Selection	*SCODE	no-go	
10. Open-circuit sensor signalling Without / open-circuit sensor signal / relay / output signal A corresponding to input variable [%]			
0) No sensor signal for current or voltage measurement		DEF	0
 1) With sensor signal / relay disabled / output signal A % 		CZ	1
2) With sensor signal / relay energized / output signal A %	К	CZ	2
3) With sensor signal / relay de-energized / output signal A %	к	CZ	3
4) With sensor signal / relay energized / hold A at last value	К	CZ	4
5) With sensor signal / relay de-energized / hold A at last value	К	CZ	5
Lines 1, 2 and 3: Specify value of output signal span in %, any value from –10% to 110%; e.g. with output 420 mA corresponding 2.4 mA –10% and 21.6 mA 110% Lines 2 to 5: Cannot be combined with active trip point GW3, Feature 18. lines 1 to 3 and Feature 19. lines 1 and 2			
11. Mains ripple suppression			-
0) Frequency 50 Hz			. 0
1) Frequency 60 Hz		Z	. 1
12. Local setting of trip point GW1 (for output contact K1)			-
0) Alarm function inactive	N		0
1) Trip point adjustable, potentiometer $II -10+10\%$	OP	Z	1
2) Trip point variable, potentiometer 1 0100%	OP	Z	2
3) Potentiometer II 1 ineffective	0	Z	3
13. Type and value of trip point GW1 and reset ratio, energizing delay and de-energizing delay of relay 1 (for K1)			
0) Alarm function inactive		0	0
1) Low alarm [%;%;s;s]		NZ	1
2) High alarm [%;%;s;s]		NZ	2
3) Rate-of-change alarm δx/δt [%/s;%;s;s]		NPZ	3
Lines 1 and 2: Trip point –10 to 110%; reset ratio 0.5 to 100% Line 3: Trip point \pm 1 to \pm 50%/s; reset ratio 1 to 100%/s Lines 1 to 3: Energizing / de-energizing delay 1 to 60 s			
14. Sense of action of relay 1 (for GW1 resp. K1)			
0) Alarm function inactive		0	0
1) Relay energized in alarm condition / LED lit in alarm condition		NZ	1
2) Relay energized in alarm condition / LED lit in safe condition		NZ	2
3) Relay energized in safe condition / LED lit in alarm condition		NZ	3
4) Relay energized in safe condition / LED lit in safe condition		NZ	4

Order Code 603 -			
Features, Selection	*SCODE	no-go	
15. Local setting of trip point GW2 (for output contact K2)			
0) Alarm function inactive	Q		0
1) Trip point adjustable, potentiometer <i>I</i> 2 −10 +10%	RS	Z	1
2) Trip point variable, potentiometer 1 2 0 100%	RS	Z	2
3) Potentiometer II 2 ineffective	R	Z	3
16. Type and value of trip point GW2 and reset ratio, energizing delay and de-energizing delay of relay 2 (for K2)			
0) Alarm function inactive		R	. 0
1) Low alarm [%;%;s;s]		QZ] . 1
2) High alarm [%;%;s;s]		QZ	. 2
3) Rate-of-change alarm δx/δt [%/s;%;s;s]		QPZ] . 3
17. Sense of action of relay 2 (for GW2 resp. K2)			
0) Alarm function inactive		R	0
1) Relay energized in alarm condition / LED lit in alarm condition		QZ] 1
2) Relay energized in alarm condition / LED lit in safe condition		QZ	2
3) Relay energized in safe condition / LED lit in alarm condition		QZ	3
4) Relay energized in safe condition / LED lit in safe condition		QZ	4
18. Type and value of trip point GW3 and reset ratio, energizing delay and de-energizing delay of relay 3 (for K3)			
0) Alarm function inactive	L		0
1) Low alarm [%;%;s;s]	М	KZ	1
2) High alarm [%;%;s;s]	М	KZ	2
3) Rate-of-change alarm $\delta x/\delta t$ [%/s;%;s;s]	М	KZ	3
19. Sense of action of relay 3 (for GW3 resp. K3)			
0) Alarm function inactive		М	0
1) Relay energized in alarm condition		KLZ] 1
2) Relay energized in safe condition		KLZ	2

* Lines with letter(s) under "no-go" cannot be combined with preceding lines having the same letter under "SCODE".

Table 7: Data on explosion protection $\overleftarrow{\epsilon_x}$ II (1) G


Order Code	M	ion "Intrinsic safety" arking	Type examination certificate	Mounting location of the instrument
	Instrument	Measuring input		
603-13/14	[EEx ia] IIC	EEx ia IIC	PTB 97 ATEX 2074 X	Outside the hazardous area

Important condition: The SINEAX VC 603 may only be programmed using a PRKAB 600 with the component certificate PTB 97 ATEX 2082 U.

Table 8: Temperature measuring ranges

Measuring range	Resista thermor					The	rmo-coup	ble				
[°C]	Pt100	Ni100	В	E	J	К	L	N	R	S	Т	U
0 20												
0 25	Х	Х										
0 40	Х	Х		Х	Х		Х					
0 50	Х	Х		Х	Х	Х	Х				Х	Х
0 60	Х	Х		Х	Х	Х	Х				Х	Х
0 80	Х	Х		Х	Х	Х	Х				Х	Х
0 100	Х	Х		Х	Х	Х	Х	Х			Х	Х
0 120	Х	Х		Х	Х	Х	Х	Х			Х	Х
0 150	Х	Х		Х	Х	Х	Х	Х			Х	Х
0 200	Х	Х		Х	Х	Х	Х	Х			Х	Х
0 250	Х	Х		Х	Х	Х	Х	Х			Х	Х
0 300	Х			Х	Х	Х	Х	Х	Х	Х	Х	Х
0 400	Х			Х	Х	Х	Х	Х	Х	Х	Х	Х
0 500	Х			Х	Х	Х	Х	Х	Х	Х		Х
0 600	Х			Х	Х	Х	Х	Х	Х	Х		Х
0 800			Х									
0 900			Х	Х	Х	Х	Х	Х	Х	Х		
01000			Х	Х	Х	Х		Х	Х	Х		
01200			Х		Х	Х		Х	Х	Х		
01500			Х						Х	Х		
01600			Х						Х	Х		
50 150	Х	Х		Х	Х	Х	Х	Х			Х	Х
100 300	Х			Х	Х	Х	Х	Х			Х	Х
300 600	Х			Х	Х	Х	Х	Х	Х	Х		Х
600 900			Х	Х	Х	Х	Х	Х	Х	Х		
6001000			Х	Х	Х	Х		Х	Х	Х		
9001200			Х		Х	X		Х	Х	Х		
6001600			Х						Х	Х		
6001800			Х									
-20 20	Х	Х		Х	Х		Х					
-10 40	Х	Х		Х	Х	Х	Х					Х
-30 60	Х	Х		Х	Х	Х	Х	Х			Х	Х
Measuring range limits [°C]	-200 to 850	-60 to 250	0 to 1820	-270 to 1000	-210 to 1200	-270 to 1372	-200 to 900	-270 to 1300	-50 to 1769	-50 to 1769	-270 to 400	-200 to 600
	$\Delta R minfull-:\leq 7.\Delta R minfull-:> 7.t$	h 8 Ω at scale 40 Ω 40 Ω at scale 40 Ω to 00 Ω		1	1		U min 2 m		1	1	1	

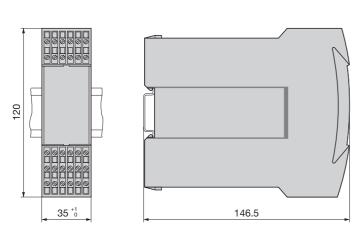

Electrical connections

Table 9: Measuring input

Measurement	Measuring range limits	Measuring span	No.	Wiring diagram Terminal arrangement
DC voltage (direct input)	– 3000300 mV	2300 mV	1	1 6 11 - 2 7 12 +
DC voltage (input via potential divider)	– 40040 V	0.340 V	2	1 6 11 - 2 7 12 +
DC current	– 120 12 mA/ – 500100 mA	0.08 12 mA/ 0.75100 mA	3	1 6 11 - 2 7 12 +
Resistance thermometer RT or resistance measurement R, two-wire connection	0 740 Ω / 05000 Ω	8 740 Ω / 405000 Ω	4	1611 RT 1 2712 Rw2
Resistance thermometer RT or resistance measurement R, three-wire connection	0 740 Ω / 05000 Ω	8 740 Ω / 405000 Ω	5	
Resistance thermometer RT or resistance measurement R, four-wire connection	0 740 Ω / 05000 Ω	8 740 Ω / 405000 Ω	6	1611 _{RT} H
2 identical three-wire resistance transmitters RT for deriving the difference	RT1 - RT2 0 740 Ω / 05000 Ω	8 740 Ω / 405000 Ω	7	1611 R1 6 16 16 16 16 16 11 11 11 111 111 111 111 111 111 111 111 111 111 111 111 111 111 1111 111 11111 1111111111111
Thermo-couple TC Cold junction compensation internal	– 3000300 mV	2300 mV	8	1 6 11 2 7 12 +
Thermo-couple TC Cold junction compensation external	– 3000300 mV	2300 mV	9	1 6 11 Compensating 2 7 12 Compensating resistor
Thermo-couple TC in a summation circuit for deriving the mean temperature	– 3000300 mV	2300 mV	10	1 6 11 2 7 12 Compen- sating resistor
Thermo-couple TC in a differential circuit for deriving the mean temperature	TC1 - TC2 - 3000300 mV	2300 mV	11	1611 2712 + C(Ref.)
Resistance sensor WF	0 740 Ω / 05000 Ω	8 740 Ω / 405000 Ω	12	1 6 11 2 7 12 0%
Resistance sensor WF DIN	0 740 Ω / 05000 Ω	8 740 Ω / 405000 Ω	13	1 6 11 2 7 12 0%

Dimensional drawings

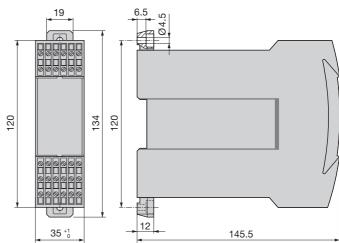


Fig. 6. SINEAX VC 603 in housing **S35** clipped onto a top-hat rail $(35 \times 15 \text{ mm or } 35 \times 7.5 \text{ mm}, \text{ acc. to EN 50 022}).$

Fig. 7. SINEAX VC 603 in housing ${\bf S35},$ with the screw hole brackets pulled out for wall mounting.

Table 10: Accessories and spare parts

Description	Order No.
Programming cable PRKAB 600 for SINEAX/EURAX VC 603/V 604, SIRAX V 644 and SINEAX TV 809	147 787
Ancillary cable for SINEAX/EURAX VC 603/V 604 and SIRAX V 644	988 058
Configuration Software VC 600 for SINEAX/EURAX VC 603 / V 604 and SIRAX V 644 Windows 3.1x, 95, 98, NT and 2000 incl. V 600 (Version 1.6, DOS) on CD in German, English, French and Dutch (Download free of charge under http://www.gmc-instruments.com) In addition, the CD contains all configuration programmes presently available for Camille Bauer products.	146 557
Pull-out handle (for removing device from its housing)	988 149
Front label (behind transparent cover)	973 489
Inscription label (green, for recording programmed settings)	120 626
Operating Instructions VC 603-1 B d-f-e	988 074

Standard accessories

- 1 Operating Instructions in three languages: German, French, English
- 2 Pull-out handle (for removing device from its housing)
- 2 Front labels (behind transparent cover)
- 2 Inscription labels (green, for recording programmed settings)
- 1 Type examination certificate (only for "intrinsically safe" explosion-proof devices)

Printed in Switzerland • Subject to change without notice • Edition 03.01 • Data sheet No. VC 603-1 Le

Aargauerstrasse 7 CH-5610 Wohlen/Switzerland Phone +41 56 618 21 11 Fax +41 56 618 24 58 e-mail: cbag@gmc-instruments.com http://www.gmc-instruments.com

